Section 1.3 Evaluating Limits Analytically

Properties of Limits:

THEOREM I.I Some Basic Limits

Let b and c be real numbers and let n be a positive integer.

$$1. \lim_{x \to c} b = b$$

$$2. \lim_{x \to c} x = c$$

$$3. \lim_{x \to c} x^n = c^n$$

THEOREM 1.2 Properties of Limits

Let b and c be real numbers, let n be a positive integer, and let f and g be functions with the following limits.

$$\lim_{x \to c} f(x) = L \quad \text{and} \quad \lim_{x \to c} g(x) = K$$

1. Scalar multiple:
$$\lim_{x \to c} [bf(x)] = bL$$

2. Sum or difference:
$$\lim_{x \to c} [f(x) \pm g(x)] = L \pm K$$

3. Product:
$$\lim_{x \to c} [f(x)g(x)] = LK$$

4. Quotient:
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{K}, \quad \text{provided } K \neq 0$$

5. Power:
$$\lim_{x \to c} [f(x)]^n = L^n$$

Use *basic limits and properties of limits* to find the following limits.

Ex.1
$$\lim_{x \to 1} (12x^3 - 6x + 5)$$

Ex.2
$$\lim_{x \to 1} \frac{3x + 5}{x + 1}$$

THEOREM 1.3 Limits of Polynomial and Rational Functions

If p is a polynomial function and c is a real number, then

$$\lim_{x \to c} p(x) = p(c).$$

If r is a rational function given by r(x) = p(x)/q(x) and c is a real number such that $q(c) \neq 0$, then

$$\lim_{x \to c} r(x) = r(c) = \frac{p(c)}{q(c)}.$$

THEOREM 1.4 The Limit of a Function Involving a Radical

Let n be a positive integer. The following limit is valid for all c if n is odd, and is valid for c > 0 if n is even.

$$\lim_{x \to c} \sqrt[n]{x} = \sqrt[n]{c}$$

THEOREM 1.5 The Limit of a Composite Function

If f and g are functions such that $\lim_{x\to c} g(x) = L$ and $\lim_{x\to L} f(x) = f(L)$, then

$$\lim_{x \to c} f(g(x)) = f\left(\lim_{x \to c} g(x)\right) = f(L).$$

Ex.3
$$\lim_{x \to -3} \sqrt[3]{12x+3}$$

Ex.4 Given $\lim_{x\to c} f(x) = 27$, evaluate the following limits:

(a)
$$\lim_{x\to c} \sqrt[3]{f(x)} =$$

(b)
$$\lim_{x \to c} \frac{f(x)}{18} =$$

(c)
$$\lim_{x\to c} [f(x)]^2 =$$

(d)
$$\lim_{x \to c} [f(x)]^{\frac{2}{3}} =$$

THEOREM 1.6 Limits of Trigonometric Functions

Let c be a real number in the domain of the given trigonometric function.

$$\mathbf{1.} \lim_{x \to c} \sin x = \sin c$$

$$2. \lim_{x \to c} \cos x = \cos c$$

3.
$$\lim_{x\to c} \tan x = \tan c$$

$$4. \lim_{x \to c} \cot x = \cot c$$

5.
$$\lim_{x \to c} \sec x = \sec c$$

6.
$$\lim_{x \to c} \csc x = \csc c$$

Ex.5 Evaluate: $\lim_{x \to \frac{5\pi}{3}} \cos(x)$

THEOREM 1.7 Functions That Agree at All But One Point

Let c be a real number and let f(x) = g(x) for all $x \neq c$ in an open interval containing c. If the limit of g(x) as x approaches c exists, then the limit of f(x) also exists and

$$\lim_{x \to c} f(x) = \lim_{x \to c} g(x).$$

Ex.6 Evaluate: $\lim_{x \to -2} \frac{3x^2 + 5x - 2}{x + 2}$

A Strategy for Finding Limits

- **1.** Learn to recognize which limits can be evaluated by direct substitution. (These limits are listed in Theorems 1.1 through 1.6.)
- **2.** If the limit of f(x) as x approaches c cannot be evaluated by direct substitution, try to find a function g that agrees with f for all x other than x = c. [Choose g such that the limit of g(x) can be evaluated by direct substitution.]
- **3.** Apply Theorem 1.7 to conclude *analytically* that

$$\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = g(c).$$

4. Use a *graph* or *table* to reinforce your conclusion.

Ex.7 Evaluate: $\lim_{x \to 3} \frac{\sqrt{x+1} - 2}{x-3}$

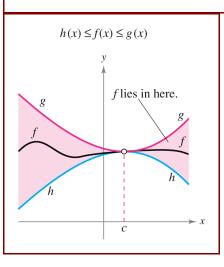
Ex.8 Evaluate:
$$\lim_{x \to 0} \frac{\frac{1}{x+4} - \frac{1}{4}}{x}$$

THEOREM 1.8 The Squeeze Theorem

If $h(x) \le f(x) \le g(x)$ for all x in an open interval containing c, except possibly at c itself, and if

$$\lim_{x \to c} h(x) = L = \lim_{x \to c} g(x)$$

then $\lim_{x\to c} f(x)$ exists and is equal to L.



Ex.9 Evaluate: $\lim_{x \to 0} x^2 \cos\left(\frac{1}{x^2}\right)$

THEOREM 1.9 Two Special Trigonometric Limits

$$1. \lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$2. \lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$

Ex.10 Evaluate: $\lim_{x \to 0} \frac{\cos(x) - \sin(x) - 1}{2x}$

Ex.11 Given $f(x) = 3x^2 + x$, evaluate: $\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$